Première sujets Année 2017-2018

Ph DEPRESLE

27 mai 2018

Table des matières

1	Devoir n 1 Septembre 2017 2 heures	2
2	Devoir n 2 Octobre 2017 2 heures	4
3	Devoir n 3 Novembre 2017 2 heures	5
4	Devoir n 4 Décembre 2017 2 heures	7
5	Devoir n 5 Janvier 2018 2 heures	9
6	Devoir n 6 Février 2018 2 heures	12
7	Devoir n 7 Mars 2018 2 heures	14
8	Devoir n 8 Avril 2018 2 heures	16
9	Devoir n 9 Mai 2018 2 heures	18
10	Devoir n 10 Mai 2018 2 heures	20

Devoir n 1 Septembre 2017 2 heures

Première 10

Lundi 18 Septembre 2017

INTERROGATION ÉCRITE N 1

EXERCICE 1 (4 points)

Résoudre dans \mathbb{R} les équations suivantes :

1.
$$x^2 + 16x + 63 = 0$$

2.
$$3x^2 - 5x + 4 = 6$$

3.
$$x^3 - 7x^2 + 12x = 0$$

4.
$$(x^2 - x - 1)(x^2 + 7x - 12) = 0$$

EXERCICE 2 (4 points)
Résoudre:
$$\frac{(x^4 + x^2 + 7)(x^3 - 16x)}{(x^2 - x - 1)(-x + 1)} > 0$$

EXERCICE 3 (4 points)

Calculer

1.
$$A = 1 + \frac{1}{2} + \frac{1}{1 + \frac{1}{2}} + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$

2.
$$B = \frac{1 + \frac{1}{1 + \frac{1}{2}}}{1 - \frac{1}{1 - \frac{1}{2}}} + \frac{1 + \frac{1}{1 + \frac{1}{3}}}{1 - \frac{1}{1 - \frac{1}{3}}} + \frac{1 + \frac{1}{1 + \frac{1}{4}}}{1 - \frac{1}{1 - \frac{1}{4}}}$$

3.
$$C = (1 + \sqrt{8})^2 + \frac{3}{1 - \sqrt{2}} + 7\sqrt{2}$$

4.
$$D = (1 + \sqrt{2})^4 + \frac{1}{\sqrt{2} - 1}$$

EXERCICE 4 (4 points)

On considère le trinôme suivant : $(m+3)x^2 + 2(3m+1)x + (m+3)$, où m est un réel. $(m \neq -3)$

1. Pour quelles valeurs de m admet-t-il une racine double? Quelle est alors la valeur de cette ra-

2

2. Pour quelles valeurs de *m* admet-il deux racines distinctes?

EXERCICE 5 (4 points)

Résoudre le système :
$$\begin{cases} x^2 y^2 = 12 \\ \frac{1}{x^2} + \frac{1}{y^2} = \frac{7}{12} \end{cases}$$

2 Devoir n 2 Octobre 2017 2 heures

Première 10

Lundi 9 Octobre 2017

INTERROGATION ÉCRITE N 2

EXERCICE 1 (4 points)

Soit f la fonction définie sur \mathbb{R} par f(x) = |x+1| + |-x+2| + |x|.

- 1. Exprimer f(x) sans valeur absolue suivant les valeurs de x et représenter f dans un repère.
- 2. Discuter suivant les valeurs de m du nombre de solution(s) de l'équation f(x) = m.

EXERCICE 2 (4 points)

Partie A:

Démontrer que $f: x \mapsto \sqrt{x}$ est croissante sur $[0; +\infty[$.

Partie B:

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = x^2 + x - 2$.

- 1. Dresser, en justifiant, le tableau de variation de f.
- 2. Justifier que la fonction g définie par $g(x) = \sqrt{x^2 + x 2}$ est définie sur l'intervalle $|-\infty;-2|$.
- 3. Dresser, en justifiant, le sens de variation de la fonction g sur l'intervalle $]-\infty;-2]$.

EXERCICE 3 (4 points)

- 1. Étudier le signe sur \mathbb{R} de $f(x) = 3x^2 5x 2$ et factoriser f(x).
- 2. Résoudre sur \mathbb{R} l'inéquation $3x^4 5x^2 2 < 0$

EXERCICE 4 (4 points)

Résoudre sur $\mathbb{R} : |\sqrt{4x^2 + 20x + 25} - 7| = 3$

EXERCICE 5 (4 points)

- 1. Déterminer un polynôme P de degré 2 tel que, pour tout x réel, P(x+1) P(x) = 2x et P(0) = 0.
- 2. En déduire la somme des n premiers nombres entiers pairs non nul : S = 2 + 4 + uuu + 2n.
- 3. En déduire la somme des n premiers nombres entiers non nuls.

3 Devoir n 3 Novembre 2017 2 heures

Première 10

Lundi 13 Novembre 2017

INTERROGATION ÉCRITE N 3

EXERCICE 1 (4 points)

On pose pour tout x réel $f(x) = 10x^3 + 11x^2 - 31x + 10$.

- 1. Résoudre f(x) = 10
- 2. Calculer f(1). En déduire une factorisation de f(x).
- 3. Résoudre dans \mathbb{R} l'inéquation f(x) < 0.

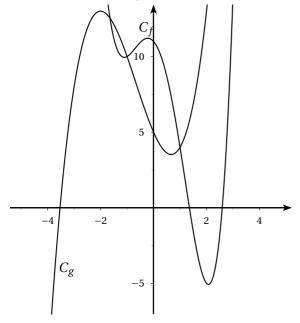
EXERCICE 2 (4 points)

Partie A: Vérifier que $(x^2 - 1)(x^2 - 2x - 6) = x^4 - 2x^3 - 7x^2 + 2x + 6$

Partie B: Dans le dessin ci-dessous, \mathscr{C}_f et \mathscr{C}_g sont les représentations graphiques des fonctions polynômes f et g définies par

$$f(x) = x^4 - x^3 - 5x^2 - 2x + 11$$
 et $g(x) = x^3 + 2x^2 - 4x + 5$.

- 1. Étudier le signe de f(x) g(x).
- 2. En déduire les positions relatives des courbes Cf et Cg.



EXERCICE 3 (4 points) Résoudre graphiquement sur [-3;3]:

$$\frac{x-1}{x+1} = ||x-1| - 2|$$

 $TSVP \Rightarrow$

Soit ABC un triangle, I le milieu de [AB], et J et K les points définis par $\overrightarrow{BJ} = \frac{3}{5}\overrightarrow{BC}$ et $\overrightarrow{AL} = 3\overrightarrow{AC}$.

- 1. Faire une figure.
- 2. Exprimer \overrightarrow{IJ} et \overrightarrow{JL} en fonction de \overrightarrow{AB} et de \overrightarrow{AC} .
- 3. *I*, *J* et *L* sont-ils alignés?
- 4. On considère le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$. Dans ce repère donner les coordonnées des points A, B, C, I, J, K. Retrouver le résultat de la question précédente.

EXERCICE 5 (4 points) Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ on donne A(3;5) B(-1;1) et C(2;-1).

- 1. Déterminer une équation de la droite (AB).
- 2. Déterminer une équation de la médiane issue de A du triangle ABC.
- 3. Déterminer une équation de la médiatrice du coté [BA].
- 4. Déterminer les coordonnées du centre de gravité G du triangle ABC.

4 Devoir n 4 Décembre 2017 2 heures

Première 10

Lundi 4 Décembre 2017

INTERROGATION ÉCRITE N 4

EXERCICE 1 (4 points)

- 1. Calculer $A = 15 + 30 + 35 + \cdots + 30720$
- 2. Calculer $B = 1000 + 900 + 810 + \dots + 313,8105961$
- 3. 2016 chocolats sont positionné tels que :

1 chocolat sur la 1^{er} ligne,

2 chocolats sur la 2^e ligne, etc.

Combien de chocolats a-t-on sur la dernière ligne?

4. Calculer $C = \sum_{i=0}^{20} 7i$

EXERCICE 2 (4 points)

1. On considère les droites $\mathcal D$ et $\mathcal D'$ d'équations cartésiennes respectives

2x - y - 1 = 0 et -x + 2y - 1 = 0.

- (a) Déterminer un vecteur directeur de chacune des deux droites et montrer qu'elles ne sont pas parallèles.
- (b) Déterminer les coordonnées du point d'intersection 1 des deux droites.
- (c) Construire ces deux droites dans un repère du plan.
- (d) Montrer que la droite d'équation cartésienne kx + (1-k)y 1 = 0 passe par le point 1 pour tout réel k donné.
- 2. On considère les droites \mathcal{D}_k et \mathcal{D}'_k , d'équations cartésiennes respectives kx + (1-k)y 1 = 0 et k'x + (1-k')y 1 = 0, avec k et k' deux réels distincts.
 - (a) Déterminer un vecteur directeur de chacune des deux droites et montrer qu'elles ne sont pas parallèles.
 - (b) Déterminer les coordonnées du point d'intersection des deux droites. Que retrouve-t-on?

EXERCICE 3 (4 points)

Soit l'équation (E) : $2x^4 - 9x^3 + 8x^2 - 9x + 2 = 0$

- 1. (a) Zéro est-il solution de l'équation (E)?
 - (b) Montrer que (E) peut s'écrire : $2x^2 9x + 8 \frac{9}{x} + \frac{2}{x^2} = 0$ on notera (E') cette nouvelle équation.
- 2. Pour tout *x* non nul, on pose $X = x + \frac{1}{x}$.
 - (a) Démontrer que (E') peut s'écrire $2X^2 9X + 4 = 0$.
 - (b) En déduire les solutions de (E).

On considère la suite (u_n) définie par : $u_0 = 2$ et, pour tout entier nature n :

$$u_{n+1} = \frac{u_n + 2}{2u_n + 1}.$$

On admet que tous les termes de cette suite sont définis et strictement positifs.

1. On considère l'algorithme suivant :

Entrée	Soit un entier naturel non nul <i>n</i>
Initialisation	Affecter à u la valeur 2
Traitement et sortie	POUR <i>i</i> allant de 1 à <i>n</i>
	Affecter à u la valeur $\frac{u+2}{2u+1}$
	Afficher <i>u</i>
	FIN POUR

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour n = 3. Les valeurs de u seront arrondies au millième.

i	1	2	3
и			

- 2. On considère la suite (v_n) définie, pour tout entier naturel n, par : $v_n = \frac{u_n 1}{u_n + 1}$.
 - (a) Démontrer que la suite (v_n) est géométrique de raison $-\frac{1}{3}$.
 - (b) Calculer v_0 puis écrire v_n en fonction de n.
- 3. On admet que, pour tout entier naturel n, on a $v_n \neq 1$. Montrer que, pour tout entier naturel n, on a : $u_n = \frac{1+v_n}{1-v_n}$ et exprimer u_n en fonction de n.

8

$\underline{\textbf{EXERCICE 5}}$ (4 points) Résoudre dans $\mathbb R$:

1.
$$x^2 - x + 1 = 2$$

2.
$$x^3 - 5x^2 + 6x = 0$$

3.
$$|x-1| - |2x+6| + |5-x| \le 4$$
.

5 Devoir n 5 Janvier 2018 2 heures

Première 10

Lundi 15 Janvier 2018

INTERROGATION ÉCRITE N 5

EXERCICE 1 (4 points)

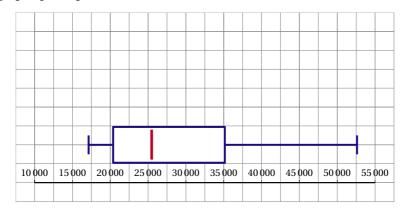
partie A

Le tableau suivant donne la distribution des salaires annuels bruts en euros des salariés dans le privé et le semi-public en France en 2006 :

	Premier décile	Premier quartile	Médiane	Troisième quartile	Neuvième décile
Homme	17 138	20 250	25 478	35 272	52 620
Femme	15 923	18 518	22 825	30 327	40 879

Source INSEE.

1. La distribution des salaires annuels bruts des salariés « Homme » est représentée ci-dessous. Sur le même graphique, représenter la distribution des salaires annuels bruts des salariés « Femme ».



- 2. Recopier et compléter la phrase suivante :
 - « La dispersion des salaires est plus réduite chez les femmes avec un rapport inter-décile de 2,6 contre . . . chez les hommes. »

partie B

Le tableau suivant donne la structure des effectifs et les salaires nets annuels moyens selon la catégorie socio-professionnelle dans le privé et le semi-public en France en 2006 :

	Femmes		Hommes	
	Effectifs (en %)	Salaires (en	Effectifs (en %)	Salaires (en
		euro)		euro)
Cadres	12,7	37 917	18,3	49 304
Professions intermédiaires	28,1	21 787	22,6	24 782
Employés et Ouvriers	59,2	15 650	59,1	17 386

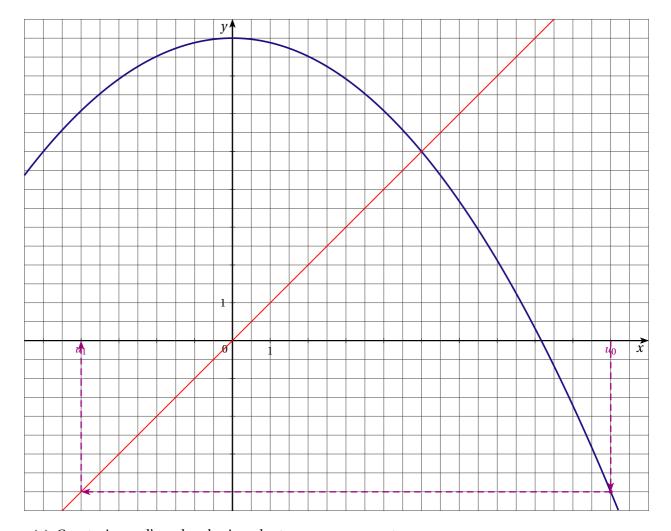
Source INSEE.

1. À partir des données figurant dans le tableau ci-dessus, effectuer les calculs qui permettent d'aboutir à la synthèse suivante :

- « Dans le secteur privé ou semi-public, le salaire net annuel moyen d'une femme travaillant à temps complet s'élève en 2006 à 20 202 euros, soit 18,9% de moins que celui d'un homme.
- Le déficit de salaire pour les femmes est particulièrement accentué chez les cadres (-23,1%), nettement moindre chez les employés et les ouvriers (-10%). »
- 2. En 2006, le salaire net annuel moyen des cadres était de 46 221 euros. Quel était le pourcentage, arrondi à 0,1% près, de femmes parmi les cadres?

Soit (u_n) la suite définie par $u_0 = 10$ et pour tout entier naturel n, $u_{n+1} = 8 - 0$, $12 \times u_n^2$.

- 1. Calculer u_0 et u_1 .
- 2. On a tracé ci-dessous dans un repère orthonormé, la courbe représentative de la fonction f définie pour tout réel x par f(x) = 8 − 0,12x² et la droite Ø d'équation y = x.
 On a représenté sur l'axe des abscisses, les deux premiers termes de la suite (u_n).



- (a) Construire sur l'axe des abscisses les termes u_2 , u_3 , u_4 et u_5 .
- (b) La suite (u_n) est-elle monotone?

Les questions suivantes sont indépendantes.

- 1. Soit (u_n) la suite définie par $u_0 = -12$ et pour tout entier naturel n, $u_{n+1} = u_n + \frac{5}{6}$. Calculer u_{42} .
- 2. (v_n) est une suite géométrique de raison q strictement positive telle que $v_4 = 48$, $v_6 = \frac{64}{3}$. Déterminer l'entier p tel que $v_p = \frac{256}{27}$.

EXERCICE 4 (4 points)

Partie A

On donne
$$\cos \frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$
.

Calculer
$$\sin \frac{\pi}{8}$$
 En déduire les sin et cos de $\frac{5\pi}{8}$, $\frac{7\pi}{8}$, $\frac{9\pi}{8}$.

Simplifier chacune des expressions suivantes :

1.
$$A = \cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{\pi}{8}$$

2.
$$B = \sin(x - 3\pi) + 2\cos(\frac{\pi}{2} + x) + \sin(\pi - x)$$

EXERCICE 5 (4 points)

Soit $(0; \vec{i}; \vec{j})$ un repère orthonormé.

Soit A(-2;4); B(2;7) et C(8;-1)

- 1. Donner au degré près une valeur de l'angle \widehat{BAC} .
- 2. Donner une équation du cercle circonscrit au triangle ABC.
- 3. Soit le point D (4;-4). Quelle est la nature du quadrilatère ABCD?
- 4. Soit le point E(8;4). Comparer AB + BC et AE + EC.

Devoir n 6 Février 2018 2 heures

Première 10

Lundi 5 Février 2018

INTERROGATION ÉCRITE N 6

EXERCICE 1 (4 points)

Résoudre dans l'intervalle $\left[-\pi; \frac{5\pi}{2}\right]$ l'inéquation $\frac{4\cos^2 x - 3}{2\sin x + 1} \ge 0$

EXERCICE 2 (4 points)

Simplifier les expressions suivantes :

$$A = (\cos x + \sin x)^2 + (\cos x - \sin x)^2$$

$$B = \cos^4 x - \sin^4 x$$

$$B = \cos^4 x - \sin^4 x$$

$$C = \cos(\pi - x) + \sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x) + \sin(\pi + x)$$

$$D = \sin(\pi - x) - \cos(\frac{\pi}{2} - x) + \cos(-x) + \sin(\frac{\pi}{2} - x).$$

EXERCICE 3 (4 points)

Soit la fonction f définie par $f(x) = \frac{x^3 + x^2 + x + 1}{x^2 + 2}$.

- 1. Démontrer que $f'(x) = \frac{x^4 + 5x^2 + 2x + 2}{(x^2 + 2)^2}$
- 2. Déterminer l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 2.
- 3. Déterminer l'intersection de la tangente à la courbe \mathscr{C}_f au point d'abscisse 0 avec l'axe des
- 4. Déterminer l'intersection de la tangente à la courbe \mathscr{C}_f au point d'abscisse -1 avec l'axe des ordonnées.

EXERCICE 4 (4 points)

Soit la suite (u_n) définie par $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{1}{3}u_n - 4 \end{cases}$

- 1. Calculer u_1 et u_2 . Montrer que la suite (u_n) n'est ni arithmétique, ni géométrique.
- 2. On pose $v_n = u_n + 6$ pour tout n entier naturel.
 - (a) Prouver que (v_n) est une suite géométrique de raison $\frac{1}{3}$.
 - (b) Exprimer v_n en fonction de n.
 - (c) Calculer $A = v_0 + v_1 + v_2 + \cdots + v_{18}$.

3. Exprimer u_n en fonction de n.

EXERCICE 5 (4 points)

ABCD est un parallélogramme.

- 1. Construire le point E tel que : $\overrightarrow{DE} = 2\overrightarrow{DB}$. Construire le point F tel que : $\overrightarrow{CF} = 5\overrightarrow{CA}$. Construire le point G tel que : $\overrightarrow{BG} = 3\overrightarrow{AB}$.
- 2. Démontrer que les points E, F et G sont alignés.

7 Devoir n 7 Mars 2018 2 heures

Première 10

Lundi 12 Mars 2018

INTERROGATION ÉCRITE N 7

EXERCICE 1 (5 points)

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = \frac{n+2}{2n+2}u_n$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que la suite (v_n) définie par $v_n = \frac{u_n}{n+1}$ est géométrique, et calculer v_n puis u_n en fonction de n.

EXERCICE 2 (5 points)

Dans un repère orthonormé du plan, on donne les points A(5;4) et B(-3;-2). Soit $\mathscr C$ le cercle de diamètre [AB], et D la droite d'équation 3x + 4y = 0.

- 1. Donner une équation de \mathscr{C} , son centre Ω et son rayon.
- 2. Donner une équation de la droite Δ perpendiculaire à D passant par Ω . Déterminer un vecteur directeur unitaire (de norme 1) de Δ .
- 3. Déterminer les coordonnées des points I et J ($x_I < x_I$) d'intersection de Δ et de \mathscr{C} .
- 4. Ecrire une équation de la tangente à \mathscr{C} en I.

EXERCICE 3 (5 points)

1. Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = x^3 + 6x^2 + 19x - 26$$

(a) Par développement et identification, déterminer les réels *e*, *b* et *c* tels que :

$$g(x) = (x-1)(ax^2 + bx + c)$$

- (b) En déduire le signe de g(x) sur \mathbb{R}
- 2. On considère la fonction f définie sur $\mathbb{R}\setminus\{-2\}$ par :

$$f(x) = \frac{x^3 - 19x - 6}{(x+2)^2}$$

- (a) Calculer f'(x) où f' est la dérivée de f.
- (b) En utilisant le signe de g(x), étudier le signe de f'(x) et en déduire le sens de variation de $f \sup \mathbb{R} \setminus \{-2\}$

Soit *g* la fonction définie sur $\mathbb{R} \setminus \{0; 1\}$ par $g(x) = \frac{ax^2 + bx + c}{x^2 - x}$ où *a*, *b* et *c* sont trois réels donnés.

- 1. Calculer la dérivée de g en fonction de a, b et c.
- 2. Donner une condition nécessaire sur a, b et c pour que g admette un extremum en $\frac{1}{2}$.
- 3. Écrire les deux équations portant sur a, b et c nécessaires et suffisantes pour que la courbe représentative de g admette pour tangente la droite d'équation $y = \frac{3x+1}{4}$ en son point d'abscisse -1.
- 4. Calculer a, b et c à l'aide des trois équations obtenues ci-dessus.

8 Devoir n 8 Avril 2018 2 heures

Première 10

Lundi 26 Mars 2018

INTERROGATION ÉCRITE N 8

EXERCICE 1 (4 points)

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{x^2 + ax + b}{x - 2}$ où a et b sont des réels.

- 1. Déterminer f'(x).
- 2. Déterminer a et b tels que la droite d'équation y=8 soit tangente à \mathcal{C}_f au point d'abscisse 3.
- 3. Donner le tableau de variations de la fonction f.
- 4. Déterminer l'autre point de C où la tangente est horizontale.

EXERCICE 2 (4 points)

On considère la suite (u_n) définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}$ $u_{n+1} = 2u_n - 5$.

- 1. Calculer u_1 et u_2 . La suite (u_n) est-elle arithmétique ? géométrique ?
- 2. On pose : $\forall n \in \mathbb{N}$ $v_n = 5 u_n$. Montrer que la suite (v_n) est géométrique.
- 3. Exprimer v_n puis u_n en fonction de n.
- 4. Déterminer le sens de variations de la suite (u_n) .

EXERCICE 3 (4 points)

ABCD est un carré de côté 4 cm. Pour tout point M de [AB] distinct de A et de B, on nomme I le point d'intersection de [DM] et [AC], x la longueur AM et $\mathcal{A}(x)$ l'aire totale des deux triangles AMI et DCI.

- 1. Soit *h* la hauteur issue de I dans le triangle AMI.
 - Montrer que $\frac{h}{4-h} = \frac{x}{4}$ puis exprimer h en fonction de x.
- 2. Montrer que $\mathcal{A}(x) = \frac{2(x^2 + 16)}{x + 4}$ pour tout $x \in]0;4[$.
- 3. Étudier les variations de $\mathcal{A}(x)$ et en déduire la position de M pour laquelle l'aire totale est minimale.
- 4. Justifier que l'aire totale est minimale lorsque I est le point d'intersection du cercle de centre C et de rayon CD avec le segment [AC].

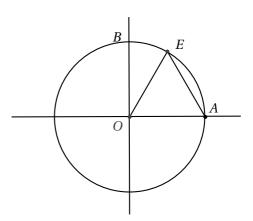
16

On lance deux fois de suite un dé cubique parfaitement équilibré, on note a le résultat du premier lancer, b le résultat du second lancer. On définit la variable aléatoire X qui, à chaque issue (a;b) de cette épreuve aléatoire associe le réel |a-b|.

- 1. Modéliser cette épreuve aléatoire à l'aide d'un tableau à double entrée.
- 2. Déterminer l'ensemble $X(\Omega)$ des valeurs prises par X et déterminer la loi de probabilité de X.
- 3. Calculer la probabilité de l'événement : «|a-b| < 3».
- 4. Déterminer l'espérance mathématique de X.

EXERCICE 5 (4 points)

- 1. Démontrer que : $\cos^4 x \sin^4 x = (\cos x + \sin x)(\cos x \sin x)$
- 2. Sachant que $\cos x = \frac{6}{7}$ et que $x \in [15\pi; 16\pi]$ Calculer $\sin x$ et en déduire $A = \cos(\frac{\pi}{2} x) + \sin(\frac{\pi}{2} x)$.
- 3. Résoudre sur $\left[\pi, \frac{7\pi}{2}\right]$ l'équation $\cos x = -\frac{1}{2}$
- 4. Dans le cercle trigonométrique ci-dessous : le point E est repéré par le réel $\frac{\pi}{3}$. Montrer que le triangle OEA est équilatéral et en déduire $\cos\frac{\pi}{3}$ et $\sin\frac{\pi}{3}$



9 Devoir n 9 Mai 2018 2 heures

Première 10

Lundi 7 Mai 2018

INTERROGATION ÉCRITE N 9

EXERCICE 1 (4 points)

Soit la fonction f définie par $f(x) = -x^3 - \frac{3}{2}x^2 + 18x + 2$. On l'étudie sur l'intervalle [-4;3].

- 1. Déterminer la dérivée de f.
- 2. Donner le tableau de variation de f sur [-4;3].
- 3. En déduire que f est bornée sur [-4;3] et donner un encadrement de f(x) sur cet intervalle.
- 4. *f* admet-elle des extrema locaux sur [-4;3] ? Si oui les déterminer et préciser les valeurs de *x* en lesquels ils sont atteints.

EXERCICE 2 (5 points)

Soit $(0; \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé. On donne A(2; -4); B(-5; 6); C(4; -5); D(-4; 3); E(-2; 7); F(4; 5).

- 1. Vérifier que le point A appartient-il au cercle $\mathscr C$ d'équation $x^2+y^2-x+3y=6$ et déterminer le centre Ω et le rayon r de ce cercle $\mathscr C$
- 2. Déterminer une équation de la tangente au cercle $\mathscr C$ au point A.
- 3. Déterminer s'ils existent les points Z; U; T; W, intersection du cercle \mathscr{C} avec les axes du repère $(0; \overrightarrow{i}, \overrightarrow{j})$.
- 4. Déterminer une équation du cercle \mathscr{C}' de diamètre [BC]
- 5. Déterminer l'aire du triangle [DEF]

EXERCICE 3 (4 points)

Soit $(0; \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé. On considère les fonctions : $f(x) = 2x^2 - 3x + 1$ et $g(x) = x^2 - 3x + 2$.

- 1. Déterminer les points A et B intersection des deux courbes \mathscr{C}_f et \mathscr{C}_g . On appellera A le point d'abscisse positive.
- 2. Démontrer que les tangentes aux courbes \mathscr{C}_f et \mathscr{C}_g sont perpendiculaires au point A.
- 3. Déterminer au degré près l'angle \overrightarrow{OAB} .

 $TSVP \Rightarrow$

Soit la fonction f définie par $f(x) = \frac{x^3}{3} + \frac{x^2}{2} - 2x$.

On note \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $\left(0;\overrightarrow{i},\overrightarrow{j}\right)$.

- 1. Déterminer l'intersection de \mathcal{C}_f avec l'axe des abscisses.
- 2. Donner le tableau de variations de f.
- 3. Tracer avec soin la courbe \mathcal{C}_f dans un repère, on prendra 3 cm comme unité.
- 4. Soit la droite d d'équation x 2y 4 = 0. Existent-ils des points de \mathcal{C}_f où la tangente à \mathcal{C}_f est parallèle à d? Donner leurs abscisses et tracer d.
- 5. Donner l'équation de la tangente Δ à \mathcal{C}_f au point d'abscisse 0.
- 6. Étudier les positions relatives de Δ et \mathcal{C}_f puis tracer $\Delta.$
- 7. Discuter suivant les valeurs du réel m du nombre de solution(s) de l'équation f(x) = m.

10 Devoir n 10 Mai 2018 2 heures

Première 10

Lundi 28 Mai 2018

INTERROGATION ÉCRITE N 10

EXERCICE 1 (4 points)

On lance deux fois de suite un dé parfaitement équilibré, on note a le résultat du premier lancer, b le résultat du second lancer.

On définit la variable aléatoire X qui, à chaque issue (a ; b) de cette épreuve aléatoire associe le réel |a - b|.

- 1. Modéliser cette épreuve aléatoire à l'aide d'un tableau à double entrée.
- 2. Déterminer l'ensemble $X(\Omega)$ des valeurs prises par X.
- 3. Déterminer la loi de probabilité de X et calculer la probabilité de l'événement : « $|a b| \le 3$ ».
- 4. Rappeler la définition de l'espérance mathématique de X. Calculer la valeur exacte de cette espérance.

EXERCICE 2 (4 points)

On pose pour tout *x* réel $f(x) = 10x^3 + 11x^2 - 31x + 10$.

- 1. Résoudre f(x) = 10
- 2. Calculer f(1). En déduire une factorisation de f(x).
- 3. Résoudre dans \mathbb{R} l'inéquation f(x) < 0.

EXERCICE 3 (4 points)

Soit la fonction f définie par $f(x) = \frac{x^3 + x^2 + x + 1}{x^2 + 2}$.

- 1. Démontrer que $f'(x) = \frac{x^4 + 5x^2 + 2x + 2}{(x^2 + 2)^2}$
- 2. Déterminer l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 2.
- 3. Déterminer l'intersection de la tangente à la courbe \mathscr{C}_f au point d'abscisse 0 avec l'axe des abscisses.
- 4. Déterminer l'intersection de la tangente à la courbe \mathscr{C}_f au point d'abscisse -1 avec l'axe des ordonnées.

1. Simplifier la somme
$$S = \cos\left(\frac{3\pi}{2} - x\right) + \cos(\pi - x) + \sin(\pi - x) + \sin\left(\frac{\pi}{2} - x\right)$$
.

2.
$$A = \sin \frac{3\pi}{8} + \sin \frac{5\pi}{8} + \sin \frac{11\pi}{8} + \sin \frac{13\pi}{8}$$
 et $B = \cos \frac{\pi}{10} + \cos \frac{2\pi}{5} + \cos \frac{3\pi}{5} + \cos \frac{9\pi}{10}$. Démontrer sans calculatrice que les sommes A et B sont nulles.

- 3. Résoudre dans l'intervalle $[0; 2\pi[$ l'équation : $(2\sin x + \sqrt{3})(\cos x 1) = 0$.
- 4. Résoudre dans l'intervalle $]-\pi;\pi]$ de l'inéquation : $\left(\cos x + \frac{1}{2}\right)\left(\cos x \frac{\sqrt{3}}{2}\right) \le 0.$

EXERCICE 5 (4 points)

ABCD est un parallélogramme.

- 1. Construire le point E tel que : $\overrightarrow{DE} = 2\overrightarrow{DB}$. Construire le point F tel que : $\overrightarrow{CF} = 5\overrightarrow{CA}$. Construire le point G tel que : $\overrightarrow{BG} = 3\overrightarrow{AB}$.
- 2. Démontrer que les points *E*, *F* et *G* sont alignés.