TRIGONOMÉTRIE

Ph DEPRESLE

27 juin 2015

Table des matières

1	Le radian : unité de mesure d'angle	2
2	Le cercle trigonométrique	2
3	Cosinus et Sinus	3
	3.1 Enroulement d'une droite autour du cercle trigonométrique	. 3
	3.2 Cosinus et sinus d'un nombre réel	. 4
	3.3 Valeurs particulières	. 4
	3.4 Configuration du rectangle	. 6
	3.5 Configuration du triangle	. 8
	3.6 Equations	. 8
4	Les exercices	11
5	Les corrigés	13

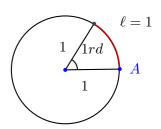
1 Le radian : unité de mesure d'angle

Définition 1. Soit C un cercle de centre O et de rayon 1.

Un radian est la mesure d'un angle au centre qui intercepte un arc de longueur 1 du cercle. La mesure en radians d'un angle au centre est donc la longueur de l'arc que l'angle intercepte sur le cercle C.

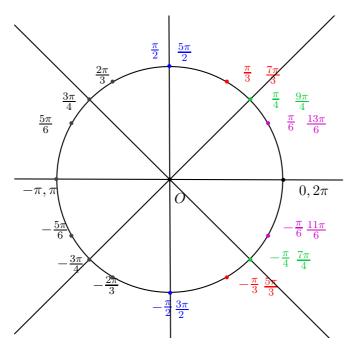
Propriétés 1. La mesure d'un angle en radians est proportionnelle à sa mesure en degrés. Tableau de proportionnalité :

mesure de l'angle en degré	360°	180°	90°	60°	45°	30°	 x°
longueur de l'arc du cercle trigono- métrique	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	 $\frac{x \times \pi}{180}$
mesure de l'angle en radian	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	 $\frac{x \times \pi}{180}$



2 Le cercle trigonométrique

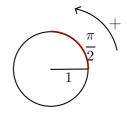
On oriente les cercles du plan en choisissant un sens positif (ou direct) : le sens positif est le sens contraire des aiguilles d'une montre.



Définition 2.

Un cercle trigonométrique est un cercle dont le rayon est égal à 1 et qui est orienté dans le sens direct (on dit aussi le sens positif).

La longueur du cercle trigonométrique est 2π La longueur du quart de cercle trigonométrique est $\frac{\pi}{2}$



3 Cosinus et Sinus

3.1 Enroulement d'une droite autour du cercle trigonométrique

A tout réel est associé un point sur le cercle trigonométrique Soit A un point du cercle. On accroche au point A une ficelle.

• Soit x > 0

La ficelle de longueur x est enroulée autour du cercle dans le sens +, à son extrémité le point M. On dit que M est associé au réel x.

• Soit x < 0

La ficelle de longueur |x| est enroulée autour du cercle dans le sens -, à son extrémité le point M. On dit que M est associé au réel x.

• Soit x = 0

C'est le point A qui est associé au réel x.

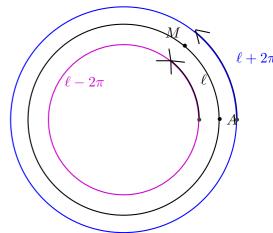
Tout point M du cercle trigonométrique est associé a une infinité de réels

Soit M un point du cercle trigonométrique. On considère un trajet, sur le cercle, pour aller de A à M. On associe alors un réel au point M :

- La longueur du trajet si celui ci suit le sens positif.
- L'opposée de cette longueur s'il suit le sens négatif.

on associe alors au point M:

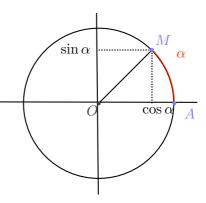
$$\begin{pmatrix}
\ell \\
\text{mais aussi} \\
-2\pi + \ell \\
\ell + 2\pi \\
\ell + 4\pi
\end{pmatrix}$$
tous les $\ell + k2\pi$, $k \in \mathbb{Z}$



3.2 Cosinus et sinus d'un nombre réel

Définition 3. Soit dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, un cercle trigonométrique de centre O et A le point du cercle de coordonnées (0,1).

A tout réel α on associe un point M sur le cercle, alors : $\cos\alpha$ est l'abscisse de M $\sin\alpha$ est l'ordonnée de M On note $M(\cos\alpha,\sin\alpha)$



Propriétés 2. $\forall \alpha \in \mathbb{R}, -1 \leqslant \cos \alpha \leqslant 1$

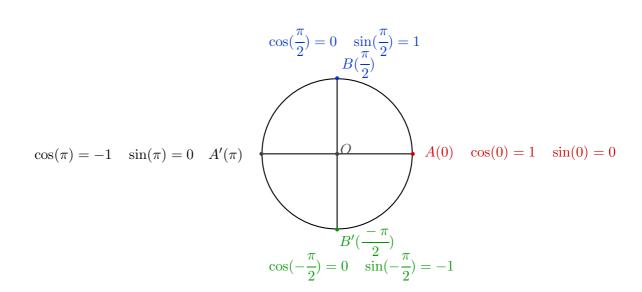
$$\alpha \in \mathbb{R}, -1 \leqslant \sin \alpha \leqslant 1$$

$$\alpha \in \mathbb{R}, \sin^2 \alpha + \cos^2 \alpha = 1$$

$$\alpha \in \mathbb{R}, \cos(\alpha + k2\pi) = \cos \alpha \ et \ \alpha \in \mathbb{R}, \sin(\alpha + k2\pi) = \sin \alpha \quad \forall k \in \mathbb{R}$$

3.3 Valeurs particulières

• **pour**
$$x = 0, \frac{\pi}{2}, \pi, -\frac{\pi}{2}$$



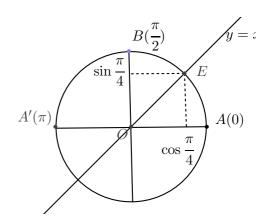
• pour
$$x = \frac{\pi}{4}$$

E est situé sur la 1^{ere} bissectrice d'équation y=x. Donc $\cos \frac{\pi}{4} = \sin \frac{\pi}{4}$ et d'autre part $\cos \frac{\pi}{4} + \sin \frac{\pi}{4} = 1$

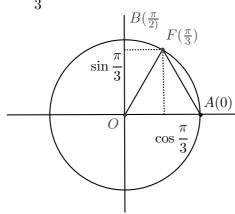
On obtient $2\cos^2\frac{\pi}{4} = 1$ soit $\cos^2\frac{\pi}{4} = \frac{1}{2}$

 $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \operatorname{car} \frac{\pi}{4} \in [0, \frac{\pi}{2}[\operatorname{donc} \cos \frac{\pi}{4} > 0]]$

On a donc $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$



• pour
$$x = \frac{\pi}{3}$$



OAF est équilatéral (car isocèle avec un angle de 60°) donc sa hauteur issue de F est aussi médiatrice de [OA] donc $\cos \frac{\pi}{3} = \frac{1}{2}$ et puisque $\cos \frac{2\pi}{3} + \sin \frac{2\pi}{3} = 1$ il vient que $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{3}$ car

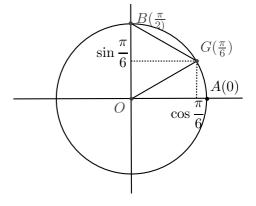
$$\cos^2\frac{\pi}{3} + \sin^2\frac{\pi}{3} = 1, \text{ il vient que } \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \text{ car}$$
$$\sin\frac{\pi}{3} > 0$$

On a donc $\cos \frac{\pi}{3} = \frac{1}{2} \text{ et } \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

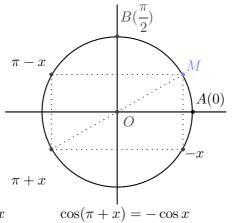
• pour
$$x = \frac{\pi}{6}$$

En raisonnant comme précédemment, OBG est équilatéral

On a donc $\sin \frac{\pi}{6} = \frac{1}{2}$ et $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$



Configuration du rectangle 3.4



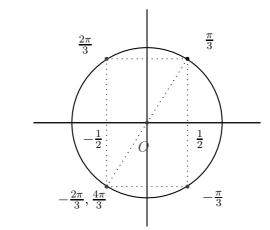
$$\cos(\pi - x) = -\cos x$$
$$\sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x$$

$$\sin(\pi + x) = -\sin x$$

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

APPLICATIONS:

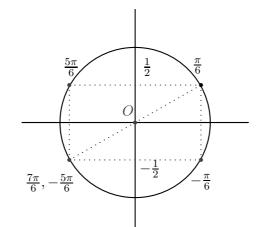


$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2} \qquad \cos(-\frac{\pi}{3}) = \frac{1}{2} \qquad \cos(-\frac{2\pi}{3}) = -\frac{1}{2}$$

$$\sin(\frac{2\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \qquad \sin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$

$$\cos(-\frac{\pi}{3}) = \frac{1}{2}$$
$$\sin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$

$$\cos(-\frac{2\pi}{3}) = -\frac{1}{2}$$
$$\sin(-\frac{2\pi}{3}) = -\frac{\sqrt{3}}{2}$$

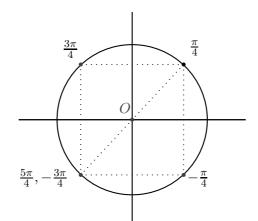


$$\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$$
$$\sin(\frac{5\pi}{6}) = \frac{1}{2}$$

$$\cos(-\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$
$$\sin(-\frac{\pi}{6}) = -\frac{1}{2}$$

$$\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2} \qquad \cos(-\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \qquad \cos(-\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$$

$$\sin(\frac{5\pi}{6}) = \frac{1}{2} \qquad \sin(-\frac{\pi}{6}) = -\frac{1}{2} \qquad \sin(-\frac{5\pi}{6}) = -\frac{1}{2}$$



$$\cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}$$
$$\sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$\cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \qquad \cos(-\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \qquad \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$\sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2} \qquad \sin(-\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \qquad \sin(-\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$

$$\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\sin(-\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$

3.5 Configuration du triangle

M et M' sont symétriques par rapport à la 1^{ere} bissectrice d'équation y=x.

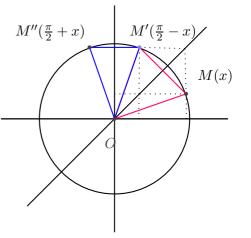
$$Donc \cos(\frac{\pi}{2} - x) = \sin x$$

$$\sin(\frac{\pi}{2} - x) = \cos x.$$

 M^{\prime} et $M^{\prime\prime}$ sont symétriques par rapport à l'axe des ordonnées.

Donc
$$\cos(\frac{\pi}{2} + x) = -\cos(\frac{\pi}{2} - x) = -\sin x$$

$$\sin(\frac{\pi}{2} + x) = \sin(\frac{\pi}{2} - x) = \cos x.$$



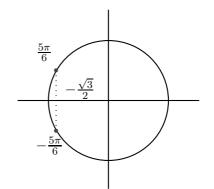
3.6 Equations

Exemples:

1. Résoudre
$$\cos x = -\frac{\sqrt{3}}{2}$$

$$\cos x = -\frac{\sqrt{3}}{2}$$

$$\iff \begin{cases} x = \frac{5\pi}{6} + k2\pi \\ \text{ou} , k \in \mathbb{Z} \\ x = -\frac{5\pi}{6} + k2\pi \end{cases}$$

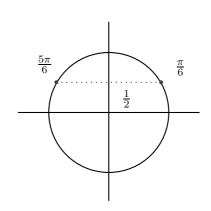


2. Résoudre
$$\sin 3x = \frac{1}{2}$$

$$\sin 3x = \frac{1}{2}$$

$$\iff \begin{cases}
3x = \frac{5\pi}{6} + k2\pi \\
\text{ou}, k \in \mathbb{Z} \\
3x = \frac{\pi}{6} + k2\pi \end{cases}$$

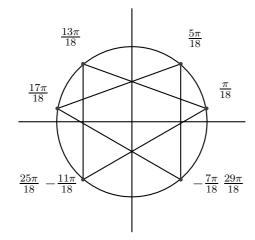
$$\iff \begin{cases}
x = \frac{5\pi}{18} + k\frac{2\pi}{3} \\
\text{ou}, k \in \mathbb{Z} \\
x = \frac{\pi}{18} + k\frac{2\pi}{3}
\end{cases}$$



Les solutions dans l'intervalle $[0,2\pi]$ sont :

$$S_{[0,2\pi]} = \left\{ \frac{\pi}{18}, \frac{5\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}, \frac{25\pi}{18}, \frac{29\pi}{18} \right\}$$
Celles dans l'intervalle $[-\pi, \pi]$ sont :

$$S_{[-\pi,\pi]} = \left\{ -\frac{11\pi}{18}, -\frac{7\pi}{18}, \frac{\pi}{18}, \frac{5\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18} \right\}$$



$$S_{[-\pi,3\pi]} = \left\{ -\frac{11\pi}{18}, -\frac{7\pi}{18}, \frac{\pi}{18}, \frac{5\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}, \frac{25\pi}{18}, \frac{29\pi}{18}, \frac{37\pi}{18}, \frac{41\pi}{18}, \frac{49\pi}{18}, \frac{53\pi}{18} \right\}$$
Celles dans l'intervalle $[-\pi, 3\pi]$ sont :

3. **QCM**

Questions	Réponses					
1. Si la droite a pour équation $x = 5$ alors cette droite est	□ parallèle à l'axe des					
	abscisses					
	□ parallèles à l'axe des					
	ordonnées					
	□ quelconque					
2. Deux droites parallèles ont des vecteurs directeurs	□ opposés					
	□ colinéaires					
	□ inverse					
3. Si $A(2;-1)$ et $B(-2;1)$ alors une équation de (AB) est	$\Box y = \frac{1}{2}x + 1$					
	$\Box y = 2x$					
	$\Box \ y = -\frac{1}{2}x$					
4. Si $A(-2; -3)$ $B(2; 3)$ $C(6, 9)$ alors les coordonnées du	\square $G(2;3)$					
centre de gravité sont	$\square G(3;2)$					
	$\square G(-2;2)$					

Les exercices

- 1. Donner une mesure en radians des valeurs suivantes :

- b. 270°
- 120°

300° d.

2. Déterminer

a.
$$\sin\left(\frac{2\pi}{3}\right)$$

b.
$$\cos\left(\frac{5\pi}{6}\right)$$

c.
$$\sin\left(\frac{7\pi}{6}\right)$$

d.
$$\sin\left(-\frac{\pi}{4}\right)$$

e.
$$\cos\left(\frac{4\pi}{3}\right)$$

f.
$$\sin\left(-\frac{3\pi}{2}\right)$$

- 3. Sachant que $x \in \left[\frac{\pi}{2}, \pi\right]$:
 - (a) Déterminer $\cos x$ sachant que $\sin x = \frac{\sqrt{3}}{3}$
 - (b) Déterminer $\sin x$ sachant que $\cos x = -\frac{1}{2}$
- 4. Résoudre sur $[-\pi, \pi]$:

a.
$$\cos x = -\frac{\sqrt{2}}{2}$$

b.
$$\sin x = \frac{1}{2}$$

a.
$$\cos x = -\frac{\sqrt{2}}{2}$$
 b. $\sin x = \frac{1}{2}$ c. $-\cos x = -\frac{\sqrt{3}}{2}$ d. $\sin x = -\frac{\sqrt{2}}{2}$

5. Résoudre sur $[-\pi, 3\pi]$:

a.
$$\cos x = \frac{\sqrt{2}}{2}$$

b.
$$\sin x = -\frac{1}{2}$$

a.
$$\cos x = \frac{\sqrt{2}}{2}$$
 b. $\sin x = -\frac{1}{2}$ c. $\cos x = -\frac{\sqrt{3}}{2}$ d. $\sin x = \frac{\sqrt{3}}{2}$

$$d. \quad \sin x = \frac{\sqrt{3}}{2}$$

6. Résoudre sur $[-\pi, \pi]$:

a.
$$\cos^2 x = \frac{1}{2}$$

b.
$$4\sin^2 x - 3 = 0$$

a.
$$\cos^2 x = \frac{1}{2}$$
 b. $4\sin^2 x - 3 = 0$ c. $\cos\left(x - \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2}$ d. $\sin 2x = \frac{1}{2}$

$$d. \quad \sin 2x = \frac{1}{2}$$

7. Résoudre sur $[-\pi, \pi]$:

a.
$$\cos x \leqslant \frac{1}{2}$$

b.
$$\sin x \geqslant 0$$

c.
$$\sin x \cos x \geqslant 0$$

8. **QCM**

Questions	Réponses
1. M est le point image du nombre réel $\frac{-\pi}{3}$ sur un cercle trigonométrique. M est aussi le point image de :	$ \Box \frac{2\pi}{3} $ $ \Box \frac{5\pi}{3} $ $ \Box \frac{-5\pi}{3} $
2. $\sin \frac{2\pi}{3}$ est égal à	$ \Box \frac{1}{2} $ $ \Box -\frac{\sqrt{3}}{2} $ $ \Box \frac{\sqrt{3}}{2} $
	$\Box \frac{\sqrt{3}}{2}$
3. $\cos \frac{15\pi}{6}$ est égal à	□ 1 □ -1 □ 0
4. cos 3 est	□ positif □ négatif □ nul
5. Sachant que $\cos x = \frac{3}{5}$ et que $x \in \left[\pi; \frac{3\pi}{2}\right]$ alors $\sin x$ vaut :	$ \Box \frac{2}{5} $ $ \Box -\frac{4}{5} $ $ \Box \frac{4}{5} $

5 Les corrigés

1. a.
$$60^{\circ} = \frac{\pi}{3} rd$$

b.
$$270^{\circ} = 3 \times 90^{\circ} = 3 \times \frac{\pi}{2}$$
 $rd = \frac{3\pi}{2}$ rd

c.
$$120^{\circ} = 2 \times 60^{\circ} = 2 \times \frac{\pi}{3}$$
 $rd = \frac{2\pi}{3}$ rd

d.
$$300^{\circ} = 10 \times 30^{\circ} = 10 \times \frac{\pi}{6}$$
 $rd = \frac{5\pi}{3}$ rd

2. a.
$$\sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

b.
$$\cos\left(\frac{5\pi}{6}\right) = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

c.
$$\sin\left(\frac{7\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

d.
$$\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

e.
$$\cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

f.
$$\sin\left(-\frac{3\pi}{2}\right) = -\sin\left(\frac{3\pi}{2}\right) = -\sin\left(\pi + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

3. On sait que
$$x \in [\frac{\pi}{2}, \pi]$$
 et on utilise la relation $\sin^2 x + \cos^2 x = 1$.

(a)
$$\sin x = \frac{\sqrt{3}}{3} \operatorname{donc} \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{\sqrt{3}}{3}\right)^2 = 1 - \frac{1}{3} = \frac{2}{3}$$

L'équation $\cos^2 x = \frac{2}{3}$ a deux solutions mais comme $x \in [\frac{\pi}{2}, \pi]$, on ne gardera que la solution négative, a savoir :

$$x = -\sqrt{\frac{2}{3}}$$

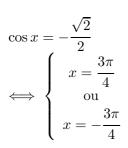
(b)
$$\cos x = -\frac{1}{2} \operatorname{donc} \sin^2 x = 1 - \cos^2 x = 1 - \left(-\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4}$$

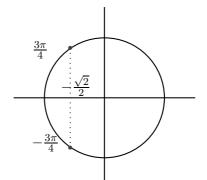
L'équation $\sin^2 x = \frac{2}{3}$ a deux solutions mais comme $x \in [\frac{\pi}{2}, \pi]$, on ne gardera que la solution positive, a savoir :

$$x = \frac{\sqrt{3}}{2}$$

4. Résoudre sur $[-\pi, \pi]$:

a.
$$\cos x = -\frac{\sqrt{2}}{2}$$





On procède de la même façon :

b.
$$\sin x = \frac{1}{2} \iff \begin{cases} x = \frac{\pi}{6} \\ \text{ou} \\ x = \frac{5\pi}{6} \end{cases}$$

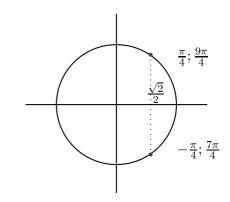
c.
$$-\cos x = -\frac{\sqrt{3}}{2} \iff \cos x = \frac{\sqrt{3}}{2} \iff \begin{cases} x = \frac{\pi}{6} \\ \text{ou} \\ x = -\frac{\pi}{6} \end{cases}$$

d.
$$\sin x = -\frac{\sqrt{2}}{2} \iff \begin{cases} x = -\frac{\pi}{4} \\ \text{ou} \\ x = -\frac{3\pi}{4} \end{cases}$$

5. Résoudre sur $[-\pi, 3\pi]$:

a.
$$\cos x = \frac{\sqrt{2}}{2}$$

$$\cos x = \frac{\sqrt{2}}{2} \iff \begin{cases} x = -\frac{\pi}{4} \\ \text{ou} \\ x = \frac{\pi}{4} \\ \text{ou} \\ x = \frac{7\pi}{4} \\ \text{ou} \\ x = \frac{9\pi}{4} \end{cases}$$



On procède de la même façon :

b.
$$\sin x = -\frac{1}{2}$$
 c. $\cos x = -\frac{\sqrt{3}}{2}$ d. $\sin x = \frac{\sqrt{3}}{2}$

$$\iff \begin{cases}
x = -\frac{5\pi}{6} & \text{ou} \\
x = -\frac{\pi}{6} & \text{ou} \\
x = \frac{7\pi}{6} & \text{ou} \\
x = \frac{7\pi}{6} & \text{ou} \\
x = \frac{11\pi}{64}
\end{cases}
\iff \begin{cases}
x = -\frac{\sqrt{3}}{2} & \text{decompletes of } x = \frac{\pi}{3} \\
x = -\frac{\pi}{6} & \text{ou} \\
x = \frac{7\pi}{6} & \text{ou} \\
x = \frac{11\pi}{64}
\end{cases}$$

$$\Rightarrow \begin{cases}
x = -\frac{\pi}{3} & \text{ou} \\
x = \frac{7\pi}{3} & \text{ou} \\
x = \frac{11\pi}{3} & \text{ou} \\
x = \frac{8\pi}{3}
\end{cases}$$

6. Résoudre sur $[-\pi, \pi]$:

a.
$$\cos^2 x = \frac{1}{2}$$

$$\cos^2 x = \frac{1}{2} \iff \cos x = \frac{\sqrt{2}}{2} \text{ ou } \cos x = -\frac{\sqrt{2}}{2}$$
Soit $x = -\frac{3\pi}{4} \text{ ou } x = -\frac{\pi}{4} \text{ ou } x = \frac{\pi}{4} \text{ ou } x = \frac{3\pi}{4}$
b. $4\sin^2 x - 3 = 0$

$$4\sin^{2}x - 3 = 0$$

$$4\sin^{2}x - 3 = 0 \iff (2\sin x - \sqrt{3})(2\sin x + \sqrt{3}) = 0 \iff \sin x = \frac{\sqrt{3}}{2} \text{ ou } \sin x = -\frac{\sqrt{3}}{2}$$

$$Soit \ x = -\frac{2\pi}{3} \text{ ou } x = -\frac{\pi}{3} \text{ ou } x = \frac{\pi}{3} \text{ ou } x = \frac{2\pi}{3}$$

$$c. \cos\left(x - \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2}$$

$$\cos\left(x - \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2} \iff x - = -\frac{5\pi}{6} \text{ ou } x - \frac{\pi}{4} = \frac{5\pi}{6} \text{ soit } x = -\frac{7\pi}{12} \text{ ou } x = -\frac{13\pi}{12} \text{ mais}$$

sur
$$[-\pi, \pi]$$
 seul convient $x = -\frac{7\pi}{12}$

d.
$$\sin 2x = \frac{1}{2}$$

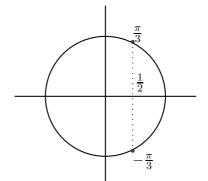
 $\sin 2x = \frac{1}{2} \iff 2x = \frac{\pi}{6} \text{ ou } 2x = \frac{5\pi}{6}$
soit $x = \frac{\pi}{12} \text{ ou } x = \frac{5\pi}{12}$

7. Résoudre sur $[-\pi, \pi]$: a. $\cos x \leqslant \frac{1}{2}$

a.
$$\cos x \leqslant \frac{1}{2}$$

$$\cos x \leqslant \frac{\sqrt{2}}{2}$$

$$\iff x \in [-\pi; -\frac{\pi}{3}] \cup [-\pi; -\frac{\pi}{3}]$$



 $\mathrm{b.sin}\,x\geqslant0$

 $\sin x \geqslant 0 \iff x \in [0; \pi].$ c. $\sin x \cos x \geqslant 0$

 $\sin x \cos x \geqslant 0 \iff x \in [-\pi; -\frac{\pi}{2}] \cup [0; \frac{\pi}{2}]$

8. **QCM**

Questions	Réponses
1. M est le point image du nombre réel $\frac{-\pi}{3}$ sur un cercle trigonométrique. M est aussi le point image de :	$\Box \frac{2\pi}{3}$ $\blacksquare \frac{5\pi}{3}$ $\Box \frac{-5\pi}{3}$
2. $\sin \frac{2\pi}{3}$ est égal à	$\Box \frac{1}{2}$
	$\Box -\frac{\sqrt{3}}{2}$ $\blacksquare \frac{\sqrt{3}}{2}$
	$\blacksquare \frac{\sqrt{3}}{2}$
3. $\cos \frac{15\pi}{6}$ est égal à	
	□ -1 ■ 0
4. cos 3 est	positif
	\square négatif
	□ nul
5. Sachant que $\cos x = \frac{3}{5}$ et que $x \in \left[\pi; \frac{3\pi}{2}\right]$ alors $\sin x$	$\Box \frac{2}{5}$
vaut:	\blacksquare $-\frac{4}{5}$
	$\Box \frac{4}{5}$